Fumarate - based Macromers as Scaffolds for Tissue Engineering Applications
نویسندگان
چکیده
O ur laboratory has developed a number of novel synthetic scaffold materials based on fumaric acid for an assortment of tissue engineering applications. These biodegradable materials include poly(propylene fumarate) (PPF), poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)), and oligo(poly(ethylene glycol) fumarate) (OPF), each of which can be applied as an injectable liquid and crosslinked in situ to form a polymer network. Although each fumarate-based macromer presents a unique set of physical and mechanical properties, the materials can be tailored for particular applications, ranging from cell encapsulation to gene delivery. The injectability and biodegradability of fumarate-based polymers, coupled with the ease with which they can be modified, uniquely situate fumarate-based macromers as excellent scaffolds for tissue engineering.
منابع مشابه
Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملIbuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering
Background: This study addressed the development of biodegradable and biocompatible scaffolds with enhanced biomechanical characteristics. The biocompatibility and the cationic nature of chitosan (CTS) make it more effective as a bone grafting material. Methods: The hydroxyapatite nanoparticles (nHA) were synthesized by hydrothermal method, and bioglass (nBG) (50% SiO2-45% CaO-5% P2O5) was synt...
متن کاملBiodegradable and Photopolymerizable Hydrogels for Tissue Engineering Based on Poly(ethylene glycol) and Sebacic acid
Introduction Poly (ethylene glycol, PEG) based macromers have been widely used in tissue engineering applications as hydrogel type biomaterials, mainly due to their well known hydrophilicity and biocompatibility [1,2]. In addition, PEG based biodegradable hydrogels have been reported [3] and have drawn more attraction for tissue engineering scaffolds and/or drug delivery systems [4,5]. However,...
متن کاملBiodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate).
It is becoming increasingly apparent that the architecture and mechanical properties of scaffolds, particularly with respect to mimicking features of natural tissues, are important for tissue engineering applications. Acrylated poly(glycerol sebacate) (Acr-PGS) is a material that can be cross-linked upon exposure to ultraviolet light, leading to networks with tunable mechanical and degradation ...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کامل